Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Electron. j. biotechnol ; 39: 91-97, may. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1052260

ABSTRACT

BACKGROUND: Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperature and relatively good alkali stability. In this study, to better meet the requirements, the alkali stability of PCL was further improved via directed evolution with error-prone PCR. RESULTS: The mutant PCL (N157F) with an improved alkali stability was selected based on a high-throughput activity assay. After incubating at pH 11.0 for 120 min, N157F retained 70% of its initial activity, which was 23% higher than that of wild type PCL. Combined with the three-dimensional structure analysis, N157F exhibited an improved alkali stability under the high pH condition due to the interactions of hydrophilicity and ß-strand propensity. Conclusions: This work provided the theoretical foundation and preliminary data for improving alkali stability of PCL to meet the industrial requirements, which is also beneficial to improving alkali-tolerance ability of other industrial enzymes via molecular modification.


Subject(s)
Penicillium/enzymology , Enzyme Stability , Detergent Industry , Lipase/metabolism , Penicillium/isolation & purification , Penicillium/genetics , Polymerase Chain Reaction/methods , Cold Temperature , Alkalies , Biocatalysis , Hydrophobic and Hydrophilic Interactions , Hydrogen-Ion Concentration , Lipase/isolation & purification , Lipase/genetics , Mutation
2.
Chinese Journal of Biotechnology ; (12): 1787-1796, 2019.
Article in Chinese | WPRIM | ID: wpr-771753

ABSTRACT

Chitinase has a wide industrial application prospect. For example, it can degrade shrimp shells, crab shells and other crustacean waste into high value-added chitooligosaccharides. However, the low catalytic efficiency of chitinase greatly limits the production of chitooligosaccharides. In previous study, the we expressed a chitinase Chisb with high catalytic efficiency and studied its enzymatic properties. In order to further improve the catalytic efficiency of Chisb, with R13NprB-C-SP-H as the parent, here error-prone PCR was used to construct random mutant library to conduct directed evolution of chitinase Chisb. Two mutants C43D and E336R were obtained with 96-well plate primary screening and shaker-screening, and their enzymatic properties were also studied. The optimum temperature of C43D and E336R was 55 °C, and the optimum pH of C43D was 5.0, while that of E336R was 9.0. The catalytic efficiency of C43D and E336R was 1.35 times and 1.57 times higher than that of control. The chitooligosaccharide concentration of E336R and C43D was 2.53 g/L and 2.06 g/L, improved by 2.84 times and 2.31 times compared with the control (0.89 g/L), respectively. In addition, the substrate conversion rate of mutants E336R and C43D was 84.3% and 68.7%, improved by 54.6% and 39% compared with the control (29.7%), respectively. In summary, the study indicates that random mutation introduced by error-prone PCR can effectively improve the catalytic efficiency of chitinase Chisb. The positive mutants with higher catalytic efficiency obtained in the above study and their enzymatic property analysis have important research significance and application value for the biosynthesis of chitooligosaccharides.


Subject(s)
Biocatalysis , Chitin , Chitinases , Hydrogen-Ion Concentration , Polymerase Chain Reaction
3.
Biosci. j. (Online) ; 34(3): 769-777, mai/jun. 2018. tab, ilus, graf
Article in English | LILACS | ID: biblio-966998

ABSTRACT

Xylanase can hydrolyze xylan for reducing its anti-nutritional impact and improving nutrient availability, so obtaining suitable xylanase to degrade xylan is essential. Error-prone PCR and gene transformation were used in this study to obtain the ideal xylanase for degrading xylan effectively. The result showed that one mutant xylanase gene with high xylanase expression was obtained. After the mutant xylanase gene was connected with pGAPZA and transformed into Pichia pastoris (P. pastoris), the recombinant P. pastoris with mutant gene was found to produce higher xylanase activity (0.1480 U/mL) than that with the native xylanase gene (0.1360 U/mL) after 12 h incubation (p<0.05). The optimal temperature and pH of xylanase expressed by native and mutant genes were the same, i.e. 40°C and 5.50 (p<0.05). In addition, adding 0.2% Tween 80 during recombinant P. pastoris incubation could significantly increase xylanase yield by about 30-35% (p<0.05). The mutant xylanase could significantly increase xylose yield from wheat meal more than the native xylanase (p<0.05).


A xilanase pode hidrolisar o xilano para reduzir seu impacto antinutricional e melhorar a disponibilidade de nutrientes, portanto, obter xilanase adequada para degradar o xilano é essencial. A PCR propensa a erros e a transformação genética foram utilizadas neste estudo para obter a xilanase ideal para degradar eficazmente a xilana. O resultado mostrou que um gene mutante de xilanase com alta expressão de xilanase foi obtido. Depois que o gene mutante da xilanase foi conectado ao pGAPZA e transformado em Pichia pastoris (P. pastoris), o recombinante P. pastoris com o gene mutante produziu maior atividade de xilanase (0,1480 U / mL) do que com o gene nativo da xilanase (0,1360 U / mL) após 12 h de incubação (p <0,05). A temperatura e o pH ótimos da xilanase expressa pelos genes nativos e mutantes foram os mesmos, ou seja, 40 ºC e 5,50 (p <0,05). Além disso, a adição de Tween 80 a 0,2% durante a incubação de P. pastoris recombinante poderia aumentar significativamente o rendimento de xilanase em cerca de 30-35% (p <0,05). A xilanase mutante poderia aumentar significativamente o rendimento de xilose da farinha de trigo mais do que a xilanase nativa (p <0,05).


Subject(s)
Xylans , Polymerase Chain Reaction , Biochemistry , Pulp and Paper Industry
4.
Chinese Journal of Biotechnology ; (12): 255-263, 2018.
Article in Chinese | WPRIM | ID: wpr-243624

ABSTRACT

We used in vitro molecular evolution technology by error-prone PCR and high-throughput screening to improve thermostability of Bacillus flexus CCTCC 2015368 β-amylase. Mutant D476N with significant thermostability increase was selected by LB agar starch plate colorimetric assay and 96-well plate enzyme activity assay. The optimum pH was 6.5 for the mutant D476N, compared to 7.0 of the wild type. The optimal temperature was 55 ℃ for both mutant D476N and the wild type. The T₅₀ value of the mutant D476N was 4 ℃ higher than that of the wild type. The half-life of mutant D476N at 55 ℃ was 35 min, 95% higher than that of the wild type. The Km of the mutant D476N was 97.98 μmol/L, 1.14 times of that of the wild type (85.86 μmol/L). The thermostability of the mutant D476N was slightly lower than that of the wild type. The three-dimensional structure of wild type and mutant D476N was simulated by SWISS-MODEL and analyzed by PyMol software. The mutated amino acid residue Asn476 was located on the loop of protein surface. The molecular free energy(ΔG) of D476N was calculated by MOE software was 106.0 kcal/mol, reduced by 10.3% compared to the wild enzyme. These results were consistent with the theory that the protein molecular free energy and thermostability were negatively correlated.

5.
Electron. j. biotechnol ; 19(4): 26-30, July 2016. ilus
Article in English | LILACS | ID: lil-793949

ABSTRACT

Background: Glycine oxidase (GO), a type of D-amino acid oxidase, is of biotechnological interest for its potential in several fields. In our previous study, we have characterized a new glycine oxidase (BceGO) from Bacillus cereus HYC-7. Here, a variant of N336K with increased the affinity against all the tested substrate was obtained by screening a random mutant library of BceGO. It is observed that the residue N336 is invariable between its homogeneous enzymes. This work was aimed to explore the role of the residue N336 in glycine oxidase by site-directed mutagenesis, kinetic assay, structure modeling and substrate docking. Results: The results showed that the affinity of N336H, N336K and N336R increased gradually toward all the substrates, with increase in positive charge on side chain, while N336A and N336G have not shown a little significant effect on substrate affinity. The structure modeling studies indicated that the residue Asn336 is located in a random coil between -J-18 and a-10. Also, far-UV CD spectra-analysis showed that the mutations at Asn336 do not affect the secondary structure of enzyme. Conclusion: Asn336 site was located in a conserved GHYRNG loop which adjoining to substrate and the isoalloxazine ring of FAD, and involved in the substrate affinity of glycine oxidase. This might provide new insight into the structure-function relationship of GO, and valuable clue to redesign its substrate specificity for some biotechnological application.


Subject(s)
Bacillus cereus/metabolism , Amino Acid Oxidoreductases/metabolism , Glycine/analogs & derivatives , Substrate Specificity , Kinetics , Polymerase Chain Reaction/methods , Mutagenesis, Site-Directed , Amino Acid Oxidoreductases/genetics
6.
China Biotechnology ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-685206

ABSTRACT

To improve the growth enhancement activity of Vitreoscilla hemoglobin(VHb), Vitreoscilla hemoglobin gene(vgb) was mutated by error-prone PCR and then reconstituted by DNA shuffling. The shuffling library was constructed by inserting the shuffled genes into the downstream of vgb natural promoter and transforming them into E.coli DH5?. Mutated active VHb proteins were first screened in test tubes according to host cell pellets color and then in shake flasks according to host pellets wet weight .One active mutant protein, VHb′042506, was obtained after second screening. It could increased the host wet weight by 31.25% and 58.75% than that of the control which bearing natural VHb under microaerobic and extremely microaerobic conditions, respectively. Sequencing and alignment results showed that 11 nucleotides were mutated, thus resulted in 4 amino acids changes occurred in this mutant protein. CO difference spectrum test also indicated that it had higher specific absorption.

7.
Chinese Journal of Immunology ; (12)1999.
Article in Chinese | WPRIM | ID: wpr-675718

ABSTRACT

Objective:To improve the affinity of an anti TNF? scFv.Methods:Starting from an anti TNF? scFv gene a mutant phage antibody library was generated by error prone PCR.Affinity improved clones were selected and subjected to staggered extension process to shuffle the mutated sites.Mutants with further improved affinity were selected by bio panning.Affinity was judged by dot blot ELISA and thiocyanate elusion ELISA.Results:Seven affinity improved mutants were obtained from library constructed by error prone PCR.By StEP mediated shuffling of these 7 clones and via bio panning,mutants with further improved affinity were obtained.Conclusion:Combination of error prone PCR and StEP could be used to improve the affinity of antibodies. [

8.
Chinese Journal of Pathophysiology ; (12)1989.
Article in Chinese | WPRIM | ID: wpr-528127

ABSTRACT

AIM: To obtain a single-chain antibody with high affinity for hepatocellular carcinoma (HCC). METHODS: A second single-chain antibody mutant library was established by using error-prone PCR and DNA shuffling. Single-chain antibodies with high affinity for hepatocellular carcinoma were selected from phage antibody library by using ELISA. RESULTS: The content of the second single-chain antibody mutant library was about 4.5?10~7. Two selected mutants M25 and M36 were obtained after 3 rounds of panning and ELISA. Immunoassay showed that M25 and M36 bound to human HCC cells specifically. The relative affinity of M25 was 2.0 folds higher than that of the original antibody, and M36 was 2.4 folds higher than the original antibody. CONCLUSION: Error-prone PCR combined with DNA shuffling is an effective method to improve affinity of antibodies isolated from phage antibody library.

SELECTION OF CITATIONS
SEARCH DETAIL